

Tonight's Agenda

- Portsmouth Site Update
- Co-located Air Monitoring Data
- Air Monitoring & Managing Risk
- Public Comments/Questions

Public Engagement

How to have your voice heard

- Email: <u>ports-demo-questions@pppo.gov</u>
- Add a question via the chat on YouTube
- Add a question via the chat on WebEx
- Participate in the public comment session

cisco WebEx 💴

Public Comment Protocols

- Raise your hand to be identified
- Be courteous and respectful
- Keep comments to 3-4 minutes to allow all participants a chance to speak. Comments can also be submitted in writing
- To reduce background noise, speakers will be unmuted during their public comment and then returned to mute afterwards

Portsmouth Site Update

Joel Bradburne, Manager DOE's Portsmouth/Paducah Project Office

- 40+ years of experience in the nuclear industry
- Former Portsmouth Site Lead
- Bachelor of Science in Biology
- Master of Science in Environmental Management
- Certified Project Management Professional
- Has experience in:
 - Shipyard, commercial nuclear, Department of Energy, and foreign nuclear site decommissioning in various program and project management assignments

Jeremy Davis, Acting Portsmouth Site Lead

- 20 years of experience in the nuclear industry
- Life-long resident of Pike County
- B.S. Natural Sciences of Biology, Chemistry and Geology
- Experience in areas including:
 - Project Management
 - Environmental Compliance
 - Hazardous Waste Management
 - Environmental Program Integration and Facility Oversight.
- Currently a Certified Hazardous Material Manager and Project Management Professional Manager

Portsmouth Site Overview

- Located in south central Ohio
- Plant occupies approx. 1,200 acres of a 3,700-acre federal site
- Uranium enrichment operations started in 1954
- DOE EM cleanup mission began in 1989
- Full scale Demolition and Decontamination (D&D) and cleanup began in 2010

Portsmouth Ten Year Deactivation, Demolition and Cleanup Focus

- Complete deactivation and demolition of X-326, X-333 and X-330 Process Buildings
- Complete CAP 1 liners and three CAP 2 liners at On Site Waste Disposal Facility (OSWDF)
- Excavate landfills and plumes within Perimeter Road for OSWDF fill and provide contiguous land for future economic development
- Transfer ~300 acres of land to the Southern Ohio Diversification Initiative (SODI)

X-326 Process Building Deactivation, Demolition and Cleanup

✓ Deactivation Complete September 2020

Demolition Design Plan
 Approved February 2021

✓ Transite Removal started February 2021

✓ Full Demolition started May 17, 2021

✓ Transite removal completed November 23, 2021

 Structural demolition 50% completed January 24, 2022

Structural demolition to be complete in CY 2022

X-326 Demolition Progress

Public Meeting Dates

20% Complete

35% Complete

60% Complete

OFFICE OF ENVIRONMENTAL MANAGEMENT

Contaminated Plume Excavation

X-740 Plume Excavation

- Excavation complete
- Delivered 40,000 cubic yards of soil/fill to the OSWDF

X-231B Plume Excavation

- In progress
- Excavation anticipated to be complete summer 2022

- DOE is meeting its commitment to excavate plumes within Perimeter Road
 - Excavating plumes will support future site reuse

OFFICE OF ENVIRONMENTAL MANAGEMENT

On-Site Waste Disposal Facility

Cells 4 & 5

• Liner Construction Underway

Cell 1

Construction Complete
Accepting Waste

Demolition Safety Planning

OFFICE OF ENVIRONMENTAL MANAGEMENT

- A safe and methodical demolition plan, approved by Ohio EPA
- Lessons learned from decommissioning experience at DOE projects across the country
- Hazards removed from the building to make it safe for demolition
- Trained, experienced and capable workforce
- Protective measures to minimize disturbance of any residual radiological or chemical contaminants during demolition

OFFICE OF ENVIRONMENTAL MANAGEMENT

X-326 Process Building Air Monitoring

- Using input from the community, DOE lessons learned, industry best practices, meteorological data, and air modeling, the Portsmouth site Air Monitoring Network provides a layering of air monitoring equipment from the project boundary to off-site locations.
- Air monitoring is one of the many safety measures taken to ensure a safe and successful demolition.

OFFICE OF ENVIRONMENTAL MANAGEMENT

Real Time Air Monitoring Approach

- Real Time Monitoring provides the first line of defense.
- Thresholds are established so emissions at the project boundary meet established limits then assurance is provided that limits at the property boundary will be safe and compliant.
- This provides the ability to immediately react to field activity to adjust operations or apply additional controls.
- Weather conditions are also monitored real-time to ensure activities are conducted within acceptable conditions

X-326 Process Building Real-Time Monitoring Trends to Date

- Particulate matter (PM) data recorded to date indicate good control of fugitive dust
- Contamination controls including application of water misting and fixative application are effective
- Radiological releases as measured by real-time alpha/beta measurements indicate the controls instituted are protective of workers and the public

Co-Located Air Monitoring

- DOE worked with OEPA and ODH to colocate a total of 23 air monitoring stations
- In addition to DOE's data, OEPA and ODH air monitors will provide independent confirmation of air quality data during demolition work
- Tonight's session will present the most recent results from DOE monitors co-located with OEPA and ODH.

X-326 Process Building Demolition Air Monitoring Data Results

March 1 and 3, 2022

Frank Johnston, Director of Environmental Protection Fluor-BWXT Portsmouth

- 37 years experience
- Experienced in Environmental Management and Compliance:
 - Remedial Design/Remedial Action Implementation and Compliance
 - Environmental Management Systems
 - Environmental Permitting
- Experienced in the design, startup and operation of:
 - Remedial Response Actions
 - Air Emission Control Systems
 - Industrial and Municipal Wastewater Treatment Facilities
- B.S. Chemical Engineering
- Masters Business Administration

OFFICE OF ENVIRONMENTAL MANAGEMENT

X-326 Process Building Air Monitoring

Using input from the community, DOE lessons learned, industry best practices, meteorological data, and air modeling, the Portsmouth site Air Monitoring Network provides a layering of air monitoring equipment from the project boundary to off-site locations.

X-326 Demolition: Real Time Particulate Matter Air Monitors

DOE/OEPA Co-located: Real-Time Particulate Matter Air Monitors

X-326 Near Field iCAM-EE AVERAGE DAILY ALPHA DAC-HRS

X-326 Process Building Real-Time Monitoring Trends to Date

- PM data recorded to date indicate good control of fugitive dust
- Application of water misting and fixative application are proving to be effective
- Real-time alpha/beta measurements indicate the controls instituted are protective of workers and the public

OFFICE OF ENVIRONMENTAL MANAGEMENT

Identifying Contaminants of Concern for Air Modeling/Monitoring

- The majority of the chemical and radiological hazards were removed during the deactivation of the X-326 from 2011 – 2020
- Some contaminants remain due to residual chemical contamination, residual radiological contamination and contaminants associated with the building materials
- The "Contaminants of Concern" were selected based on the operational history and materials of construction of the X-326 Process Building
 - Non-Radiological contaminants (e.g. Metals, Asbestos, VOCs, PCBs)
 - Radiological contaminants (e.g. Uranium; Technetium)

- A comprehensive X-326 demolition air modeling effort was conducted during the demolition design process
- The report was peer reviewed by an independent expert retained by FBP and by a separate independent expert retained by DOE
- Air emissions calculations and air dispersion modeling assessments evaluate source-specific and cumulative impacts from activities planned
- D&D and all other site activities can be completed in compliance with Clean Air Act requirements and established emissions standards
- Ohio EPA concurred with the modeling report on May 20, 2020

This air modeling effort was used to establish appropriate locations for the Portsmouth Air Monitoring Network, parameters to be analyzed and action levels employed during work.

UPDATE – Air Monitoring Locations

Co-located Monitoring

- Provides a redundancy in air sampling to help confirm air emission impacts from on and off-site activities are consistently measured
- Regulators and the public have an independent mechanism to evaluate air emission data thus increasing confidence in the data collected
- Provides an increased level of transparency with state regulatory agencies

Co-located Air Monitoring Types

Ohio EPA/DOE Co-Located

- 5 locations on site
- Monitoring for:
 - Particulate matter
 - VOCs
 - Metals
 - Asbestos
- Data is gathered, analyzed and validated independent of DOE
- Data published quarterly

ODH/DOE Co-Located

- 18 locations on site and off site
- Monitoring for:
 - RADs (radiological)
 - Fluoride*
- Data is gathered, analyzed and validated independent of DOE
- Data published quarterly

OFFICE OF ENVIRONMENTAL MANAGEMENT

DOE/Ohio EPA Non-Radiological Sampling

- Metals: Antimony, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Lead, Manganese, Mercury, Nickel, and Selenium are sampled weekly
- Volatile Organic Compounds (VOCs) (Trichloroethene and others) are sampled weekly
- Fibers/Asbestos fibers is sampled weekly

- Per Ohio EPA Technical Guidance, the Maximum Acceptable Ground-Level Concentration (MAGLC) is used as the basis for comparison of our air monitoring data.
- The MAGLC is a calculated value based on exposure and operational assumptions.
- The MAGLC is established for non-radiological parameters at the property boundary. Analytical data are then compared to the corresponding MAGLC.
- The use of the MAGLC and the associated calculations were presented in the Air Modeling Report approved by Ohio EPA

Threshold limit values come from OSHA and the American Conference of Governmental Industrial Hygienists

UPDATE – DOE Data at DOE/Ohio EPA Co-Located Stations

OFFICE OF

ENVIRONMENTAL

Applyto	MAGLC	MAX DETECT (µg/m ³)										
Anaryte	$(\mu g/m^3)$	A50	A51	A52	A53	A54						
<u>Metals</u>												
Antimony	11.9	0.01275	0.01751	0.01065	0.01397	0.02003						
Arsenic	0.238	0.00107	0.00098	0.00071	0.00083	0.00233						
Beryllium	0.00119	0.00015	0.00021	None	0.00004	0.00026						
Cadmium	0.0476	0.00209	0.00176	0.00279	0.00343	0.00190						
Chromium	1.19	0.08327	0.01293	0.03881	None	0.03260						
Cobalt	0.476	0.00324	0.00171	0.00220	0.00217	0.00179						
Lead	1.19	0.05904	0.04946	0.04139	0.05806	0.03758						
Manganese	0.476	0.03466	0.01968	0.01050	0.07215	0.09357						
Mercury	0.595	0.00025	0.00022	0.00025	0.00022	0.00020						
Nickel	2.38	0.02362	0.04485	0.01970	0.14994	0.01072						
Selenium	4.76	0.00566	0.00542	0.00823	0.00709	0.00606						
VOCs												
Trichloroethene	1334	0.40102	1.33308	1.73737	2.91200	0.62283						

Data RangeMetalsDecember 2020- November 2021TCEDecember 2020- October 2021

Metal and VOC detects significantly below MAGLC values

UPDATE – DOE Data at DOE/Ohio EPA Co-Located Stations

OFFICE OF

ENVIRONMENTAL

Applyto	MAGLC	AVG DETECT (µg/m ³)										
Anaryte	$(\mu g/m^3)$	A50	A51	A52	A53	A54						
<u>Metals</u>												
Antimony	11.9	0.00192	0.00202	0.00184	0.00185	0.00199						
Arsenic	0.238	0.00073	0.00071	0.00051	0.00055	0.00081						
Beryllium	0.00119	0.00014	0.00021	None	0.00004	0.00011						
Cadmium	0.0476	0.00039	0.00040	0.00060	0.00041	0.00030						
Chromium	1.19	0.06953	0.01293	0.03580	None	0.01654						
Cobalt	0.476	0.00063	0.00064	0.00046	0.00051	0.00031						
Lead	1.19	0.01084	0.00770	0.00440	0.00938	0.00660						
Manganese	0.476	0.01519	0.01184	0.00702	0.03012	0.03368						
Mercury	0.595	0.00011	0.00006	0.00012	0.00008	0.00006						
Nickel	2.38	0.00834	0.01119	0.00648	0.02294	0.00348						
Selenium	4.76	0.00274	0.00200	0.00156	0.00209	0.00126						
VOCs												
Trichloroethene	1334	0.21591	0.61718	0.29175	0.59970	0.21604						

Data Range Metals December 2020- November 2021

TCE December 2020- October 2021

Metal and VOC detects significantly below MAGLC values

Airborne Asbestos Sampling

- Airborne asbestos sampling is taken on a weekly frequency
 - Sampling collects all fibers
 - Asbestos monitoring is also conducted Industrial Hygiene technicians for worker protection
- DOE uses National Institute for Occupational Safety and Health (NIOSH) approved methods
 - NIOSH methods for sampling and analysis are nationally recognized and standard industry practice

 Samples are sent to an independent laboratory for analysis

No indication of asbestos fibers at the DOE/Ohio EPA co-located air

DOE/ODH Co-Located Radiological Sampling

OFFICE OF ENVIRONMENTAL MANAGEMENT

- Transuranics: Americium-241, Neptunium-237, Plutonium-238, Plutonium-239/240 (sampled quarterly)
- Thorium Isotopes: Thorium-228, Thorium-230, Thorium-232 (sampled quarterly)
- Total Uranium (sampled monthly)
 - Uranium Isotopes: Uranium-233/234, Uranium-235/236, Uranium-238
- Technetium-99 (sampled monthly)

Transuranics at Portsmouth

- Transuranic elements (e.g., Np, Pu, Am) are heavier than uranium and listed after uranium on the Periodic Table of the Elements
- Isotopes of Np, Pu, and Am have been continuously monitored at the ambient air monitors in and around PORTS since the mid-90s
- Transuranic isotopes have been occasionally detected in ambient air samples at concentrations well below the regulatory limits through the last two plus decades

Periodic Table of the Elements

No Transuranic isotopes have been detected in any ambient air monitoring samples during X-326 demolition to date

- Results from DOE co-located air monitors are consistent with Ohio EPA and ODH independent monitoring data.
- The current results from all monitors including DOE and State of Ohio indicate no detects have been found above regulatory limits
- Monitoring data posting websites:
 - **DOE** –https://pegasis.ports.pppo.gov
 - **Ohio EPA** https://epa.ohio.gov/dapc/ams/amsmain/AMSSpecSam-DOE
 - **ODH** https://data.ohio.gov/wps/portal/gov/data/view/doe-portsmouth-facility_-radiological-air-sampling-results

COLLEGE OF ENGINEERING School of Nuclear Science and Engineering

Air Monitoring & Managing Risk

Kathryn Higley, PhD, CHP, HPS Fellow

Professor

Kathryn A. Higley is a Professor, and former Head of the School of Nuclear Science and Engineering in the College of Engineering at Oregon State University. She is the Interim Director of the Center for Quantitative Life Sciences. She has managed OSU's Radiation Health Physics program, including developing its online graduate degree, into the largest in the country.

Dr. Higley has been at Oregon State University since 1994 teaching undergraduate and graduate classes on radioecology, dosimetry, radiation protection, radiochemistry, and radiation biology. She is also a council member of the National Council on Radiation Protection. She is a board member and fellow of the Health Physics Society and a Certified Health Physicist. Dr. Higley and her students have done research in radiologically contaminated environments around the globe.

Close-in <u>and</u> distant monitoring are used, for radioactivity and airborne releases

- Example from decommissioning at another DOE site→
- "Bullseye" pattern
 - Highest concentrations generally close-in to ongoing work
- At PORTS
 - Multiple *movable* monitors follow work activity
 - Protecting public and environment (lower concentrations), may require longer sampling times and use of *fixed* monitor locations

Figure S.2. Predicted Weekly Air Exposure (DAC-hr/week) 95th Percentile Values for 236Z Rubble Pile Removal for the 60-day Removal Option

Placing air monitors

- \rightarrow Windrose shows most common directions and wind speeds
- → How far from the release should monitors be located?
 - Computer models predict locations
 - Sampling locations assess and confirm

Exposure Times & Limits

- Occupational:
 - 40+ hour per week exposure
 - Age \sim 18 70 years
- Public:
 - Assume up to 24-hour continuous exposure
 - All ages and includes at risk or sensitive groups (very young or very old)
- Result:
 - Different exposure limits for each group
 - Public limits lower (10% to 0.2%)

What's being sampled

Metals	Radionuclides						
Antimony	Americium-241						
Arsenic	Neptunium-237						
Beryllium	Plutonium-238						
Cadmium	Plutonium-239/240						
Chromium	Thorium-228						
Cobalt	Thorium-230						
Lead	Thorium-232						
Manganese	Total Uranium						
Mercury	Uranium-233/234						
Nickel	Uranium-235/236						
Selenium	Uranium-238						
	Technetium-99						
Asbestos							

Volatile organic compounds

PERIODIC TABLE OF ELEMENTS

1 H		1 Atomic Number										He					
3 Li	4 Be	H				S	Symbol					5 B	C C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg			N	Nonmetal Chemical Group Block							13 Al Aurkan	14 Si Si kan	15 P Etasticus	16 S	17 CI etictie hose	18 Ar Argen
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	Fe	27 Co :1	28 Ni	29 Cu	30 Zn	Ga	Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr Sector	39 Y	40 Zr	41 Nb Netan	42 Mo	43 TC personal	44 Ru Basedun	45 Rh	48 Pd	47 Ag	48 Cd	49 In	50 Sn	Sb Strategy	52 Te	53	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 OS	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	At	86 Rn
87 Fr	88 Ra		104 Rf	105 Db	108 Sg	107 Bh	108 Hs	109 Mt	110 DS	nn Rg	112 Cn Count ti an	113 Nh sterke	114 Fl Restan	115 MC	116 LV Jameter	117 TS	118 Og
		-	57 La	58 Ce	59 Pr	60 Nd	en Pm	Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 HO	68 Er	69 Tm	70 Yb	71 Lu
			89 Ac	⁹⁰ Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Potential Sources

- Metals
 - Geochemical (natural)
 - Human caused: electronics, coal plants, vehicle exhaust
- Radionuclides
 - Uranium (natural, mining, fertilizers, nuclear...)
 - Technetium (fallout, nuclear)
- Other
 - Asbestos (natural and technology)
 - Volatile organics (autos, factories, fires..)

How to Achieve this Endpoint

The requirements

- Protect workers
- Protect the public
- Protect the environment

The process

Oregon State University

- Review, analyze, plan, implement
 - Pick monitoring locations for safety & relevance
 - Decontaminate & decommission & deconstruct
 - Release for redevelopment

Summary

- Acceptable / regulated risk varies
 - Work
 - Play
 - General living
- The goal of remediation
 - Not to eliminate all risk from site
 - Reduces risk to acceptable level for workers, public and environment
 - Safety *is* always part of the consideration
- Thank you!

X-326 Demolition Data Website

PPPO Portsmouth X-326 Demolition v Safety Approach v Data v Contact Us v

Data Education

The safety of our workers, our community and the environment is DOE's top priority. DOE and contractors work hard to make sure communities near our facilities maintain a safe and healthy environment. To do this, the Department has a robust environmental monitoring program that meets or exceeds state and national regulatory standards.

WHAT IS ENVIRONMENTAL MONITORING?

Environmental monitoring is a system of monitors that sample at regular times. The samples are then analyzed at a laboratory and assessed to see if site activities have any impact on the public or the environment.

Environmental Monitoring at the Portsmouth site

At DOE's Portsmouth site, years of environmental studies conducted on and around the site revealed what type of contaminants were associated with uranium enrichment operations. Scientists, health officials, and risk professionals created a plan to monitor for those contaminants to maintain the safety of workers, the public and the environment.

At Portsmouth, DOE has installed an extensive monitoring program that samples for radiological and chemical contaminants in air, water, soil, sediment, and biota (animals, vegetation, crops) on and near the plant site. Each year, DOE collects, reviews and reports on more than 10,000 environmental samples. The Annual Site Environmental Report (ASER) is published each year to report the results of these monitoring efforts. Copies of the ASER are available here.

- <u>www.portsdemo.com</u> is a new DOE website focusing on X-326 project air monitoring data
- Website will include:
 - Updated real time and colocated monitoring data
 - Project updates
 - Frequently Asked Questions

Public Engagement

How to have your voice heard

Email: pppo.gov

Add a question via the chat on YouTube

Add a question via the Chat on WebEx

Participate in the Public Comment Session

cisco WebEx ᅇ

OFFICE OF ENVIRONMENTAL MANAGEMENT

Public Engagement

Public Comment Protocols

- Raise your hand to be identified
- Be courteous and treat everyone with respect.
- We ask that you keep comments within a 3-4 minute timeframe to allow for all interested parties to speak. Additional or lengthy comments can be submitted in writing.
- In order to reduce background noise, speakers will be unmuted during their public comment and then will return to mute afterwards.

